equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.






As equações de Maxwell são lineares, pois uma mudança nas fontes (as cargas e correntes) resulta em uma mudança proporcional dos campos. A dinâmica não linear pode ocorrer quando os campos eletromagnéticos se acoplam à matéria que segue as leis dinâmicas não lineares.[22] Isso é estudado, por exemplo, no assunto de magnetohidrodinâmica, que combina a teoria de Maxwell com as equações de Navier – Stokes.[23]

Quantidades e unidades

Aqui está uma lista de unidades comuns relacionadas ao eletromagnetismo:[24]

No sistema C.G.S. eletromagnético, a corrente elétrica é uma quantidade fundamental definida pela lei de Ampere e considera a permeabilidade como uma quantidade adimensional (permeabilidade relativa) cujo valor no vácuo é a unidade.[25] Como consequência, o quadrado da velocidade da luz aparece explicitamente em algumas das equações que relacionam quantidades neste sistema.


equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Sistema Internacional de Unidades para Eletromagnetismo
SímboloNome da grandezaNome da unidadeUnidadeUnidades base
Corrente elétricaampèreAA = W/V = C/s
Carga elétricacoulombCA·s
Diferença de potencial ou Potencial elétricovoltVJ/C = kg·m2·s−3·A−1
Resistência elétricaImpedânciaReatânciaohmΩV/A = kg·m2·s−3·A−2
Resistividadeohm metroΩ·mkg·m3·s−3·A−2
Potência elétricawattWV·A = J/s = kg·m2·s−3
CapacitânciafaradFC/V = kg−1·m−2·A2·s4
lambdacarga linear ou comprimento de onda
Permissividadefarad por metroF/mkg−1·m−3·A2·s4
Susceptibilidade elétricaAdimensional--
CondutânciaAdmitânciaSusceptânciasiemensSΩ−1 = kg−1·m−2·s3·A2
Condutividadesiemens por metroS/mkg−1·m−3·s3·A2
Campo magnético,densidade de fluxo magnético, Indução magnéticateslaTWb/m2 = kg·s−2·A−1 = N·A−1·m−1
Fluxo magnéticoweberWbV·s = kg·m2·s−2·A−1
Fluxo elétricocoulombC
Intensidade magnéticaampère por metroA/mA·m−1
Relutânciaampère por weberA/Wbkg−1·m−2·s2·A2
IndutânciahenryHWb/A = V·s/A = kg·m2·s−2·A−2
Permeabilidadehenry por metroH/mkg·m·s−2·A−2
Susceptibilidade magnéticaAdimensional
Susceptibilidade magnéticaAdimensional
função de transferência
coeficiente de temperatura
força e contra força elemotriz
Fase Inicial
velocidade angular ou frequência angular


equação Graceli estatística  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Outras Unidades para o Eletromagnetismo
SímboloUnidadeDescrição
ohm(unidade SI de resistência)
Fasor
rigidez dielétrica
Elétroneletrão-volt (unidade de energia)
Farad(unidade SI de capacidade)
Frequência
Gauss(unidade de campo magnético) ou prefixo giga ()
constante de Planck
constante dielétrica
indutância mútua
momento magnético
função resposta de frequência
carga elementar
Constantes de Tempo
energia potencial eletrostática
energia potencial gravítica
período de uma onda harmónica ou temperatura
Impedância
constante magnética
aumento de uma grandeza física
campo elétrico
valor máximo da função sinusoidal
pontos no espaço, curvas, superfícies e sólidos
constante de Coulomb
torque
Hertzhertz (unidade SI de frequência)
valor médio da função 
transformada de Laplace da função 
derivadas da função  de uma variável
carga volúmica ou resistividade

As fórmulas para as leis físicas do eletromagnetismo (como as equações de Maxwell) precisam ser ajustadas dependendo do sistema de unidades usado. Isso ocorre porque não há correspondência biunívoca entre as unidades eletromagnéticas do S.I. e as do C.G.S., como é o caso das unidades mecânicas. Além disso, dentro do C.G.S., existem várias opções plausíveis de unidades eletromagnéticas, levando a diferentes "subsistemas" de unidade, incluindo Gaussiano [en], "ESU", "EMU" e Heaviside – Lorentz. Entre essas opções, as unidades gaussianas são as mais comuns hoje em dia e, de fato, a frase "unidades C.G.S." é frequentemente usada para se referir especificamente às unidades C.G.S. – Gaussianas.[26]

Comentários

Postagens mais visitadas deste blog